On the Convergence Rate of a Newton-Like Method for Inverse Eigenvalue and Inverse Singular Value Problems

نویسندگان

  • Raymond H. Chan
  • Zheng-jian Bai
  • Benedetta Morini
چکیده

In this paper, we first note that Method III in Friedland, Nocedal, and Overton [SIAM J. Numer. Anal., 24 (1987), pp. 634–667] may not converge quadratically in the quotient sense. Then, we show that the method is convergent quadratically under a weaker notion of convergence — the root convergence. We also extend our results to the algorithm given in Chu [SIAM J. Numer. Anal., 29 (1992), pp. 885–903] for inverse singular value problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

A Regularized Directional Derivative-Based Newton Method for Inverse Singular Value Problems

In this paper, we give a regularized directional derivative-based Newton method for solving the inverse singular value problem. The proposed method is also globalized by employing the directional derivative-based Wolfe line search conditions. Under some mild assumptions, The global and quadratic convergence of our method is established. To improve the practical effectiveness, we also propose a ...

متن کامل

An Inexact Newton-Type Method for Inverse Singular Value Problems

In this paper, an inexact Newton-type approach is proposed for solving inverse singular value problems. We show that the method converges superlinearly. This method can reduce significantly the oversolving problem of the Newton-type method and improve the efficiency. Numerical experiments is also presented to illustrate our results.

متن کامل

A Note on the Ulm-like Method for Inverse Eigenvalue Problems

A Ulm-like method is proposed in [13] for solving inverse eigenvalue problems with distinct given eigenvalues. The Ulm-like method avoids solving the Jacobian equations used in Newton-like methods and is shown to be quadratically convergent in the root sense. However, the numerical experiments in [3] only show that the Ulm-like method is comparable to the inexact Newton-like method. In this sho...

متن کامل

Local convergence of Newton-like methods for degenerate eigenvalues of nonlinear eigenproblems. I. Classical algorithms

We study the local convergence rates of several most widely used single-vector Newton-like methods for the solution of a degenerate eigenvalue of nonlinear algebraic eigenvalue problems of the form T (λ)v = 0. This problem has not been completely understood, since the Jacobian associated with Newton’s method is singular at the desired eigenpair, and the standard convergence theory is not applic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004